J. Fluid Mech. (1990), vol. 216, pp. 93-101 93

Printed in Great Britain

Effect of a surface shear layer on gravity and
gravity—capillary waves of permanent form
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Calculations are carried out of the shape of gravity and gravity—capillary waves on
deep water in the presence of a thin sheet of uniform vorticity which models the effect
of a wind drift layer. The dependence of the fluid speed at the wave crest is determined
and compared for gravity waves with the theory of Banner & Phillips (1974). It is
found that this theory underestimates the retardation due to drift and tendency to
break. The retardation disappears when capillary forces are significant, but in this
case it is found that there can be a significant alteration of the wave shape.

1. Introduction

We consider in this work the properties of two-dimensional, periodic water waves
of permanent form on deep water when a thin shear layer is supposed to be present,
caused for example by wind stress. The layer is supposed to have an average depth
4, and contain a constant uniform vorticity —£2. The approximation of constant
vorticity is made in order to simplify the analysis. In principle, an arbitrary vorticity
distribution can be employed, but the calculations are then much harder (cf. Moore
& Saffman 1982). Below the shear layer, the flow is assumed to be irrotational.
Effects on the waves of viscosity and the air motion after the shear layer has been
set up are supposed negligible.

To formulate the problem mathematically, we move to a coordinate system
moving with the wave in which the flow is steady. The problem is to find surfaces
with spatial wavelength A, y = H,(x), y = H,(x), with H, =0, H, = — 4, and stream
functions ¥(z,y), H, <y < H,, and ¥(x,y), —o0 <y < H,, where

V¥, =Q; V¥ =0; (1.1)

¥ =const., y=H,; Y =const.,, y=H,; ¥, =const., y=0H,;(1.2)
V¥ =VY¥, y=H,; (1.3)

p+T/R =const., y=H; (1.4)

Yo~—cy as y—>0; (1.5)

where ¢ is the wave speed, p is the pressure, 7" is the surface tension and R is the
radius of curvature of the surface. See figure 1.

For the case when surface tension is neglected, Simmen & Saffman (1985)
considered the case of an infinitely deep shear layer, i.e. 4 = c0. Teles da Silva &
Peregrine (1988) found solutions for finite depth, where the bottom surface is a rigid
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Ficure 1. Sketch of the geometry.
plane, i.e. H, = — 4. We are not aware of any computed or analytic solutions for the

mathematical problem just formulated, especially for the case 4 € A. Banner &
Phillips (1974, herein referred to as BP) examined this case by ingeniously applying
conservation of vorticity to a one-dimensional description of the shear layer together
with the Levi-Civita result (see paragraph below containing equation (2.10)) to
obtain the relation

(Ug)erest = — (6= Up)* —qo(2c— o) 5, (1.6)

where u, is the speed of the fluid at the surface in the wave-fixed coordinate system
and the value at the crest is 0%, /0yl,—maxur,» Uy is the maximum forward orbital
velocity in the irrotational part of the wave, i.e. ¢ +0%/3yl,_maxn,. a0d go( X £24) is
the surface drift at the mean level of the surface. There is some ambiguity in the
definition of q,, and we shall follow the BP definition, which is g, = 0%, /0n|,_,+c.

BP argue that the limiting wave is attained, and incipient breaking occurs, when
a stagnation point occurs on the surface. According to their analysis of the shear
layer, this occurs first at the crest and the condition for incipient breaking follows

from (16), q0(26—q0) — (C—U0)2~ (17)

They also deduce from Bernoulli’s equation that

(C_QO)Z.

max H, =
29

(1.8)

Thus drift can reduce significantly the maximum elevation for breaking. Note that
the theory does not give the limiting value for A, where A = max H,—min H, is the
vertical distance between crest and trough on the surface and will be called the wave
height, as this requires knowledge of the speed in the wave troughs. Also their
comment that in a rotational flow a stagnation point at the crest need not be
associated with a discontinuity in surface slope is not correct. The angle in the cusp



Effect of surface shear on gravity and gravity—capillary waves 95

may, however, look more like 90° than 120° if 2% > g/A and the resolution is not fine
{Broadbent & Moore 1985).

One purpose of the present study is to investigate the range of 4 for the BP
argument to hold, i.e. to consider how thin the shear layer should be given ¢, or 24,
and obtain information about the limiting wave height (and not just the elevation).
A further purpose is to incorporate surface tension and determine its effect on the
conditions for a stagnation point to occur on the surface and the shape of the waves.
We have been unable to extend the BP argument to include surface tension effects
because the Levi-Civita result does not then hold. Their comment about a stagnation
point not necessarily being associated with a singularity is, however, correct in the
presence of surface tension.

Also, we wish to establish formulations of the steady waves that will enable a
stability investigation to be carried out. (For finite depth, a stability calculation to
both two- and three-dimensional disturbances has been performed by Okamura &
Oikawa 1989.) We plan to report on a study of the stability of waves with a thin shear
layer in subsequent work.

2. Fourier series formulation

Solutions for steep waves are not currently obtainable by analytic methods, and
numerical approaches are necessary. In this work we use truncated Fourier series
(Dalrymple 1974) to represent the stream functions and the fluid surfaces. This
approach gives accurate solutions quickly with little work if the wave height 4 is not
too large and allows us to establish the number of independent parameters for the
problem. Unfortunately if the waves are too steep, the method fails and then other
formulations such as boundary integral representations or spectral solutions of the
partial differential equations are more appropriate. These will be described in
subsequent work.

We take, restricting attention to waves symmetrical about crests and troughs,f
and putting A = 2m,

N
H, =Y ¢, cosnr, (2.1)
v
¥, = 3Qu* —éy+Q+ ) cosnx(a, e™ +b, e™), (2.2)
1
N
H,=—A4+3%d,cosnz, (2.3)
1
N
Y, =—cy+Q+> f,e" cosnz. (2.4)
1
The boundary conditions are
=0 on y=H, (2.5)
TH//
VD) +gH,—————==B =H,, 2.6
(VD) +gH, (L + (H)2} 1 on Yy 1 (2.6)
YV¥=¥%=K on y=H~H, (2.7)
0 /oy = 0¥, /0y on y=H, (2.8)

+ There is considerable interest in the existence of non-symmetrical waves of permanent form.
Zufiria (1987) demonstrated their existence in the absence of a shear layer for sufficiently steep
gravity waves. It is hoped to study in future work the possibility of symmetry breaking in the
presence of a shear layer.
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We suppose that 4 and £2 are given. Note that in (2.6) we take the pressure in the
air above the upper surface to be zero.

The unknowns are é, Q, ¢, Q, B,, K, plus 5N Fourier coefficients, giving 5N+ 6 in
all. Equating to zero the coefficients of cosnx (n =0,1,...,N) in the boundary
conditions gives 5N+ 5 equations. The last equation comes from imposing the wave
height

N
h =2 c,(1=(=1)"). (2.9)

This approach fails owing to divergence of the series for ¥, and/or ¥,, even when
the flow is completely free of singularities and the series for H, and H, are convergent.
This occurs (Saffman & Yuen 1982) because the analytic continuation of ¥, into the
shear layer develops singularities below y = maxH,, and when the analytic
continuation of ¥, develops singularities below y = max H, or above y = min H,, in
which case expansions of the forms (2.2) and (2.4) are inappropriate. T It also fails if
the surfaces become multivalued, i.e. overhanging waves develop.

The accuracy of the calculations was checked by comparing solutions obtained
using 25 Fourier modes to those obtained using 50 Fourier modes. For the results
presented here the first 25 Fourier modes agreed to at least 4 decimal places. It
should be emphasized that this amounts to a check on the truncation error of the
method of solution. The wave steepness at which the series start to diverge can be
determined by monitoring the decay of the coefficients of the stream function. In
some cases, this was done to determine the validity of a solution. In most cases, H,
and H, were plotted and irregularities depending upon truncation in these curves
were taken as an indication that the corresponding solution was suspect. We did not
attempt to find accurately the critical values of » at which the expansions diverged
as this is not a physically significant quantity. The plotted results are conservative;
the solutions might converge for values of h/A larger than those shown.

Unfortunately, a check on the accuracy of the solutions for gravity waves is not
provided by the Levi-Civita result that the velocity on the lower interface where
H,=—4 is equal to the wave speed, i.e. 0¥, ,/0n|,._, = —c. BP claim that the
argument for the irrotational flow still holds in the presence of the shear layer, but
this is not obvious. The result that we obtain (see the Appendix for details) is

1
B,=1*=_—| |V¥_de, (2.10)
2 2 2,\ H,

where B, is the Bernoulli constant on the interface y = H,. The Levi-Civita result,
V%] = ¢ at the mean level y = — 4 holds only if p—g4 = 0 at the mean level, or

JH VP2dx = AVPE__,,

and we see no reason why this is satisfied exactly. It may, however, be small, since
the derivative of p+gy normal to the streamlines is zero at a point of inflexion, and
points on the mean level of a streamline can be expected to be not too far from points
of inflexion. In fact, our computations suggest that c—|V¥|,__, is of order 4%4%. The
error in the BP theory due to use of the Levi-Civita relation should therefore not
matter until the wave is steep.

t Compare the failure of the Taylor series for (1+x?)! to converge for z > t owing to the
existence of a non-real singularity.
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3. Results

In figure 2 we show plots of (ug).req vS. 2/A for values of 24 from 0 to 0.5, for four
values of 4 and T' = 0, and compare them with the BP prediction of equation (1.6)
evaluated using the calculated values of the variables. We have taken g = 1, A = 2m,
and normalized the velocities on C* = (g*A*/2m):. The relation between dimensional
quantities, denoted by an asterisk, and the dimensionless variables is as follows.
A% = AX* )21, h* = hA* /27, c* = c(g*A*/2m)t, u¥ = u (g*A*/2m)E, T* = Ty*A*?/4n2,
Q* = Q(2ng* /A%, QFA4* = QA(g*A*/2m)k,

The vorticity £ can be either positive or negative, but since the equations are
invariant under the transformation c¢——c¢, € —>—8, it is sufficient to restrict
attention to positive € provided one allows for negative wave speeds ¢. There are
three classes of waves depending upon the value of ¢ as & and 24 —0. The three
values are Cj, —C,, 0. The BP case corresponds to the limit ¢ = C,, and this is the
case we concentrate on, although the others are of interest. The results show that the
drift layer significantly reduces the speed of the fluid at the crest and increases the
tendency to breaking but the effect is greater than that predicted by BP, especially
if 4 is large. The BP hypotheses are likely to be more accurate, the smaller the value
of 4.

The dependence of (uy).eq, 0N 4, for 2/A = 0.05, T = 0 and values of 24 is shown
in figure 3. It can be seen that the dependence on 4 is weak, and that the main
dependence is upon the drift velocity. We found from our computations that the
value of g, as defined in §1 was very close to £24, so that £4 is a good measure of the
surface drift velocity. The calculation breaks down when %/A becomes too large, for
the reasons explained in §2. The stronger the shear layer, the smaller the wave height
at which the method fails.

Figure 4 shows the effect of shear on the profile of a gravity wave. A gravity wave
of wave height /A = 0.062 and a wave of the same height with drift 24 = 0.456,
4 = 0.4 are plotted. The steepening of the wave with shear is quite noticeable.

The result of a calculation for non-zero surface tension is shown in figure 5. We plot
the free surface and the interface for a case with = 1.0, 4 =0.05, T = 0.2, and
h/A =:0.026. Also shown for comparison is the surface of the capillary—gravity wave
when the shear layer is absent. The oscillations of the surface are related to the
existence of multiple solutions and bifurcations (Chen & Saffman 1980). It can be
seen that the oscillations are enhanced by the shear layer and local maxima and
minima are created. Similar results were obtained for 4 = 0.2. The surface oscillations
are not found for 7 < 0.1 or 7' > 0.5.

The dependence of (u,) ... 0D T Was investigated for 2 ranging from 1.0 to 4.0 and
h/A between 0.026 and 0.04 for 4 = 0.05. In all cases ()¢5, decreased monotonically
with 7' away from zero, going from values of around —0.8 for T =0 to —1.4 for
T = 2.0 so that the tendency to break was reduced. There were some mild oscillations
of (Ug)eresy for T in the range 0.1 to 0.3, again associated with the existence of
bifurcations in this range.

In conclusion, we wish to comment that preliminary studies of waves propagating
against the drift, i.e. with negative phase speeds, indicated the non-existence of real
solutions for ranges of the parameters. This could be traced to a coalescence of the
two smaller wave speeds, and the appearance of complex wave speeds. A similar
phenomenon was shown to occur in the dynamics of interfacial waves in the presence
of a current (Saffman & Yuen 1982), and it was pointed out that the non-existence
can be identified with a hydrodynamic instability of the flow; in that case it is the
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Fiaure 2. Variation of (u,), . vs. A/A for various drift speeds and layer thicknesses, with
T =0. {a) 4 =0.05, (b) 0.1, (c) 0.2, (d) 0.4. Present computations, solid line. BP, dashed line.
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Fioure 3. Dependence of (%,),.q 00 4 for A/A = 0.05 and various £ 4. Present computations,
solid line. BP, dashed line.

Kelvin-Helmholtz instability. There is likewise an instability of the drift layer for a
range of the parameters. A study of this instability and its relevance to the
generation of waves by wind will be described in subsequent work (Caponi, Yuen,
Milinazzo & Saffman, in preparation).

This work was supported by the Office of Naval Research (Grant N00014-89-J-
1164). We wish to thank Dr H. C. Yuen for valuable comments. We also wish to
thank Dr L. Moorland for checking the results for capillary—gravity waves and
assistance with figure 5.
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F16URE 4. Shape of a gravity wave and the interface with and without drift layer for A/A = 0.062,
A4 =04, 24 = 0.456. (a) No shear layer, (b) shear layer. Upper curves are the free surface; lower
curve (b) is the bottom of the shear layer and lower curve (a) is a streamline.
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Ficure 5. Heavy lines show shape of a capillary-gravity wave and the bottom of the shear layer
for T=0.2, 2=1.0, 4 =0.05 and /A = 0.026. Light line is surface when shear layer is absent.

Appendix. The Levi-Civita relation

Consider the irrotational fluid in the region ABCD (see figure 1) between y = H,
and y = —h, where h_, is so large that the flow can be considered uniform at this
depth and is moving with speed ¢ in a wave-fixed reference frame. Applying
conservation of momentum to this region, we obtain

Poo = Gl (A1)

were we have taken the pressure in the air to be zero. Note that (A 1) holds if surface
tension is present.
From Bernoulli’s equation in the irrotational flow,

p+iVYl+gy = B, (A2)
we obtain using (A 1) B, = it (A 3)
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Applying momentum balance to the irrotational fluid in 4’B’C’D’ between the

lower surface y = H, and y = — A, we obtain
gAd =f Py, da. A1)
H,
The average of (A 2) along the interface y = H, gives
. 1 2
B, = 2 JH, (V| da. (A 5)

Let  denote the speed of the fluid on the lower interface at the mean depth where
y=—4. From (A 2) and (A 3),

¢ —u? = 2(p+gY)y_s- (A 6)

The Levi-Civita relation requires the vanishing of the right-hand side of (A 6), or
equivalently from (A 5) that the average speed on the lower interface is the speed at
its mean level. There is no obvious reason why these conditions should be satisfied
exactly, although they may, depending upon circumstances, be a good approxi-
mation.
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